Visualizing domain wall and reverse domain superconductivity

نویسندگان

  • M. Iavarone
  • S. A. Moore
  • J. Fedor
  • S. T. Ciocys
  • G. Karapetrov
  • J. Pearson
  • V. Novosad
  • S. D. Bader
چکیده

In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unanticipated proximity behavior in ferromagnet-superconductor heterostructures with controlled magnetic noncollinearity.

Magnetization noncollinearity in ferromagnet-superconductor (F/S) heterostructures is expected to enhance the superconducting transition temperature (T(c)) according to the domain-wall superconductivity theory, or to suppress T(c) when spin-triplet Cooper pairs are explicitly considered. We study the proximity effect in F/S structures where the F layer is a Sm-Co/Py exchange-spring bilayer and ...

متن کامل

Numerical Study of Coupled Fluid Flow and Heat Transfer in a Rectangular Domain at Moderate Reynolds Numbers using the Control Volume ‎Method

In this paper, we have used a control volume method to investigate the problem of a fully coupled fluid flow with heat transfer in a rectangular domain with slip wall boundary conditions. We have used this method to solve the governing equations and thereby to compute the convective and diffusive fluxes at the cell faces of the control volumes considered around the grid points of computational ...

متن کامل

Penetration of nonintegral magnetic flux through a domain-wall bend in time-reversal symmetry broken superconductors

It has been proposed that the superconductivity of Sr2RuO4 is characterized by pairing that is unconventional and, furthermore, spontaneously breaks time-reversal symmetry. However, one of the key expected consequences, viz., that the ground state should exhibit chiral-charge currents localized near the boundaries of the sample, has not been observed, to date. We explore an alternative implicat...

متن کامل

Proximity Effects in Superconductor-ferromagnet Heterostructures

The very special characteristic of the proximity effect in superconductor-ferromagnet systems is the damped oscillatory behavior of the Cooper pair wave function in a ferromagnet. In some sense, this is analogous to the inhomogeneous superconductivity, predicted long time ago by Larkin and Ovchinnikov (1964), and Fulde and Ferrell (1964), and constantly searched since that. After the qualitativ...

متن کامل

Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor

Alike materials in the solid state, the phase diagram of type-II superconductors exhibit crystalline, amorphous, liquid and spatially inhomogeneous phases. The multitude of different phases of vortex matter has thence proven to act as almost ideal model system for the study of both the underlying properties of superconductivity but also of general phenomena such as domain nucleation and morphol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014